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Abstract—Uncertainty management has always been the key 
hurdle faced by diagnostics and prognostics algorithms. A 
Bayesian treatment of this problem provides an elegant and 
theoretically sound approach to the modern Condition-
Based Maintenance (CBM)/Prognostic Health Management 
(PHM) paradigm. The application of the Bayesian 
techniques to regression and classification in the form of 
Relevance Vector Machine (RVM), and to state estimation 
as in Particle Filters (PF), provides a powerful tool to 
integrate the diagnosis and prognosis of battery health. The 
RVM, which is a Bayesian treatment of the Support Vector 
Machine (SVM), is used for model identification, while the 
PF framework uses the learnt model, statistical estimates of 
noise and anticipated operational conditions to provide 
estimates of remaining useful life (RUL) in the form of a 
probability density function (PDF). This type of prognostics 
generates a significant value addition to the management of 
any operation involving electrical systems.1 2 
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1. INTRODUCTION 

Uncertainty management is the most significant challenge 
faced by state-of-the-art health monitoring systems in these 
times of ever increasing system autonomy. As the onus of 
decision making in complex engineered systems shifts 
towards highly evolved algorithms, simple threshold based 
diagnostic decisions or single valued model or data driven 
prognostics are insufficient. The various sources of 
uncertainty inherent to the field of diagnostics and 
prognostics must be accounted for in a probabilistic fashion 
for the approach to make sense. 
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Batteries form a core component of many machines and are 
often times critical to the well being and functional 
capabilities of the overall system. Failure of a battery could 
lead to reduced performance, operational impairment and 
even catastrophic failure, especially in aerospace systems. A 
case in point is NASA’s Mars Global Surveyor which 
stopped operating in November 2006. Preliminary 
investigations revealed that the spacecraft was commanded 
to go into a safe mode, after which the radiator for the 
batteries was oriented towards the sun. This increased the 
temperature of the batteries and they lost their charge 
capacity in short order. This scenario, although drastic, is 
not the only one of its kind in aerospace applications. The 
AFRL ARGOS satellite and the Vikings 2 Mars Lander are 
both examples of systems shut down by battery failure. An 
efficient method for battery monitoring would greatly 
improve the reliability of such systems. 

The phrase “battery health monitoring” has a wide variety of 
connotations, ranging from intermittent manual 
measurements of voltage and electrolyte specific gravity to 
fully automated online supervision of various measured and 
estimated battery parameters. In the aerospace application 
domain, researchers have looked at the various failure 
modes of the battery subsystems. Different diagnostic 
methods have been evaluated, like discharge to a fixed cut-
off voltage, open circuit voltage, voltage under load and 
electrochemical impedance spectrometry (EIS) [16]. In the 
field of telecommunications, people have looked to combine 
conductance technology with other measured parameters 
like battery temperature/differential information and the 
amount of float charge [5].  

Other works have concentrated more on the prognostic 
perspective rather than the diagnostic one. Statistical 
parametric models have been built to predict time to failure 
[9]. Electric and hybrid vehicles have been another fertile 
area for battery health monitoring [12]. Impedance 
spectrometry has been used to build battery models for 
cranking capability prognosis [3]. State estimation 
techniques, like the Extended Kalman Filter (EKF), have 
been applied for real-time diagnosis of automotive batteries 
[2].   

As the popular cell chemistries changed from lead acid to 
nickel metal hydride to lithium ion, cell characterization 
efforts have kept pace. Dynamic models for the lithium ion 
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batteries that take into consideration nonlinear equilibrium 
potentials, rate and temperature dependencies, thermal 
effects and transient power response have been built [7]. 
Automated reasoning schemes based on neuro-fuzzy and 
decision theoretic methods have been applied to fused 
feature vectors derived from battery health sensor data to 
arrive at estimates of battery life [11]. However, not 
withstanding the body of work done before, it still remains 
notoriously difficult to accurately predict the end-of-life of a 
under environmental and load conditions different from 
training data sets. This is where advanced regression, 
classification and state estimation algorithms have an 
important role to play. The work presented here is an 
extension of the Bayesian diagnostic-prognostic framework 
presented in [13]. In this paper, the various sources of 
uncertainty are analyzed and their mitigation using Bayesian 
techniques is presented. We aim to do a more rigorous 
quantitative analysis of uncertainty management in battery 
health prognostics in the future.  

2. SOURCES OF UNCERTAINTY 

Prognostic predictions needs to contend with multiple 
sources of error like modeling inconsistencies, system noise 
and degraded sensor fidelity. Irrespective of whether the 
diagnostic/prognostic algorithms are model-driven or data-
driven it is not feasible to eliminate all of the above error 
factors. The following subsections discuss these uncertainty 
sources in more details. 

Modeling Error 

Modeling error arises due to the inability to create an 
analytical model that represents the actual system exactly. 
Often this is because the system dynamics are too complex 
to be accurately modeled in a computationally feasible 
framework. Also there might be insufficient knowledge 
about the system itself or its response to various 
environmental stimuli. 

Noise 

Noise in a system can be generated from a multitude of 
sources. Some may be internal to the system while others 
can infiltrate the system dynamics through noisy external 
inputs. In complex systems, the noise may electrical, 
mechanical or even thermal in nature. Electrical 
disturbances can result from things like faulty connectors, 
relay chatter, wiring crosstalk, electromagnetic interference 
and electrostatic discharge. Most mechanical disturbances 
result from vibrations or component degradation due to 
ageing, overloading or corrosion. Thermal noise can result 
from insufficient cooling or uneven heat distribution and can 
be highly disruptive to electrochemical systems like 
batteries. 

Sensors 

With ever increasing sensor suites being used to monitor 
today’s systems, sensor fidelity has assumed critical 
importance. Sensor noise can also result from a variety of 
sources like electrical interference, digitization error, sensor 
bias, deadband, backlash and nonlinearity in response. 

3. UNCERTAINTY MANAGEMENT 

Early development of diagnostic/prognostic algorithms 
concentrated on logical systems, which interacted with the 
world through "if and then" statements. The importance of 
probabilities rose with the realization that logical systems 
could not anticipate all possible contingencies. 
Consequently Bayesian techniques (amongst others) started 
to be assimilated in newer approaches. Simply put, Bayes’ 
theory defines the concept of probability as the degree of 
belief that a proposition is true. Furthermore, it also suggests 
that Bayes' theorem can be used as a rule to infer or update 
the degree of belief in light of new information or data – the 
more the data, the better the predictions. An additional 
advantage is that Bayesian models are self-correcting, 
meaning that the predictions change with change in data 
trends. 

Support Vector Machines (SVMs) [15] are a set of related 
supervised learning methods used for classification and 
regression that belong to a family of generalized linear 
classifiers. The Relevance Vector Machine (RVM) [14] is a 
Bayesian form representing a generalized linear model of 
identical functional form of the SVM. Bayesian techniques 
also provide a general rigorous framework for dynamic state 
estimation problems. The core idea is to construct a 
probability density function (PDF) of the state based on all 
available information. For a linear system with Gaussian 
noise, the method reduces to the Kalman filter. The state 
space PDF remains Gaussian at every iteration and the filter 
equations propagate and update the mean and covariance of 
the distribution.  

Relevance Vector Machine 

In a given classification problem, the data points may be 
multidimensional (say ndim). The task is to separate them by 
an ndim-1 dimensional hyperplane. This is a typical form of 
linear classifier. There are many linear classifiers that might 
satisfy this property. However, an optimal classifier would 
additionally create the maximum separation (margin) 
between the two classes. Such a hyperplane is known as the 
maximum-margin hyperplane and such a linear classifier is 
known as a maximum-margin classifier. Nonlinear kernel 
functions can be used to create nonlinear classifiers [4]. This 
allows the algorithm to fit the maximum-margin hyperplane 
in the transformed feature space, though the classifier may 
be nonlinear in the original input space.  
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This technique was also extended to regression problems in 
the form of support vector regression (SVR) [6]. Regression 
can essentially be posed as an inverse classification problem 
where, instead of searching for a maximum margin 
classifier, a minimum margin fit needs to be found. 
Although, SVM is a state-of-the-art technique for 
classification and regression, it suffers from a number of 
disadvantages, one of which is the lack of probabilistic 
outputs that make more sense in health monitoring 
applications. The RVM attempts to address these very issues 
in a Bayesian framework. Besides the probabilistic 
interpretation of its output, it uses a lot fewer kernel 
functions for comparable generalization performance. 

This type of supervised machine learning starts with a set of 
input vectors {t}n=1…N and their corresponding targets  
{θ}n=1…N. The aim is to learn a model of the dependency of 
the targets on the inputs in order to make accurate 
predictions of θ for unseen values of t. Typically, the 
predictions are based on some function F(t) defined over the 
input space, and learning is the process of inferring the 
parameters of this function. In the context of SVM, this 
function takes the form: 
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a kernel function. In the case of RVM, the targets are 
assumed to be samples from the model with additive noise: 
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where, εn are independent samples from some noise process 
(Gaussian with mean 0 and variance σ2). Assuming the 
independence of θn, the likelihood of the complete data set 
can be written as: 
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where, ΦΦΦΦ is the N x (N+1) design matrix with ΦΦΦΦ = [Φ(t1), 
Φ(t2), …, Φ(tn)]

T, wherein Φ(tn) = [1, K(tn, t1), K(tn, t2), …, 
K(tn, tN)]

T.   

To prevent over-fitting a preference for smoother functions 
is encoded by choosing a zero-mean Gaussian prior 
distribution ℘ over w: 
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with ηηηη a vector of N + 1 hyperparameters. To complete the 
specification of this hierarchical prior, we must define 
hyperpriors over ηηηη, as well as over the noise variance σ2. 
This accounts for various sources of uncertainty like noise 
and unmodeled effects not encountered during training. 
Having defined the prior, Bayesian inference proceeds by 
computing the posterior over all unknowns given the data 
from Bayes' rule: 
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Since this form is difficult to handle analytically, the 
hyperpriors over ηηηη and σ2 are approximated as delta 
functions at their most probable values ηηηηMP and σ

2
MP. 

Predictions for new data are then made according to: 

.),,|(),|(

)|(
22

*

*

www dpp

p

MPMPMP σηθσθ

θθ

∫
=

      (6) 

Particle Filter 

In the Particle Filter (PF) approach [1], [8] the state PDF is 
approximated by a set of particles (points) representing 
sampled values from the unknown state space, and a set of 
associated weights denoting discrete probability masses. The 
particles are generated and recursively updated from a 
nonlinear process model that describes the evolution in time 
of the system under analysis, a measurement model, a set of 
available measurements and an a priori estimate of the state 
PDF. In other words, PF is a technique for implementing a 
recursive Bayesian filter using Monte Carlo (MC) 
simulations, and as such is known as a sequential MC 
(SMC) method [10]. 

Particle methods assume that the state equations can be 
modeled as a first order Markov process with the outputs 
being conditionally independent. This can be written as: 

xk = f(xk-1) + ωk 

yk = h(xk) + υk         (7) 

where, x denotes the state, y is the output or measurements, 
and ωk and υk are samples from a noise distribution. 
Sampling importance resampling (SIR) is a very commonly 
used particle filtering algorithm, which approximates the 
filtering distribution denoted as p(xk|y0,…,yk) by a set of P 
weighted particles {(wk

(i),xk
(i)): i=1,…,P}. The importance 

weights wk
(i) are approximations to the relative posterior 

probabilities of the particles such that 
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At each time step k, the algorithm proceeds in two parts – 
first, by calculating the prior distribution p(xk|xk-1) according 
to the system model; and second, by updating the particle 
weights using the posterior distribution after the  
measurement at time k. The weight update is given by: 

 

,
),|(

)|()|(

:11:0

1)(
1

)(

kkk

kkkki

k

i

k

pp
ww

yxx

xxxy

−

−
−=

π
       (9) 

where, the importance distribution π(xk|x0:k-1,y1:k) is 
approximated as p(xk|xk-1). 

Although the inclusion of several particles to track the state 
variables is a significant step towards managing uncertainty 
in the model-driven PF framework, additional steps like 
resampling of the particles must be carried out to ensure that 
the state tracking is robust enough to handle sudden 
deviations caused by unmodeled effects. Resampling is used 
to avoid the problem of degeneracy of the algorithm, that is, 
avoiding the situation that all but one of the importance 
weights are close to zero. This step needs to be performed 
when the effective number of particles Peff < P, where Peff is 
computed as the inverse of the sum of squared normalized 
particle weights given in (9). Resampling is performed by 
drawing P particles from the current set with probabilities 
proportional to their weights and then simply replacing the 
current set with the new one and assigning the same weight 
1/P to all of them. 

4. APPLICATION DOMAIN 

The application domain chosen to validate the above 
described approach is a batch of second generation 18650-
size lithium-ion cells (i.e., Gen 2 cells) that were cycle-life 
tested at the Idaho National Laboratory under the Advanced 
Technology Development (ATD) Program. This program 
was initiated in 1998 by the U.S. Department of Energy in 
order to find solutions to the barriers that limit the 
commercialization of high-power lithium-ion batteries. The 
cells were aged at 60% state-of-charge (SOC) and various 

temperatures (25°C and 45°C).  The 25°C data was used as 
the baseline, while the 45°C data was designated as the 
faulty sequence. 

Model Development 

The first step in model development is to extract features 
from sensor data comprising of voltage, current, power, 
impedance electro-chemical impedance spectrometry (EIS), 
frequency and temperature readings. These features are used 
to estimate the internal parameters of the battery model 
shown in Figure 1. The parameters of interest are the double 
layer capacitance CDL, the charge transfer resistance RCT, the 
Warburg impedance RW and the electrolyte resistance RE. 
Other variants of the lumped parameter battery model are 
not investigated since they all essentially consist of a 
resistance and capacitance in parallel with another resistance 
in series, although the nomenclature of the parameters 
varies.  

The values of these internal parameters change with various 
ageing and fault processes like plate sulfation, passivation 
and corrosion. Figure 2 shows the shift in electro-chemical 
impedance spectrometry (EIS) data of one of the test cells 
with ageing at 25°C.  Figure 3 shows a zoomed in section of 
the data presented above in Figure 2 with feature extraction 
shown by the dashed curves. Since the expected frequency 
plot of a resistance and a capacitance in parallel is a 
semicircle, we fit semicircular curves to the central sections 
of the data in a least-square sense. The left intercept of the 
semicircles give the RE values while the diameters of the 
semicircles give the RCT values. Other internal parameters 
like RW and CDL are not plotted since they showed negligible 
change over the ageing process and are excluded from 
further analysis. 

Baseline data consists of parametric time series extracted 
from a group of cells aged at 25°C over a long period. RVM 
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Figure 1 – Lumped Parameter Model of a Cell 
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Figure 2 – Shift in EIS Data with Ageing 
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regression is performed on this data so as to find the 
representative ageing curves for the different parameters. 
The RVM input vector t is time, while the target vector θ is 
given by the inferred parametric values. Exponential growth 
models, as shown in (10), are then fitted on these curves to 
identify the relevant decay parameters like C and λ: 

    ),exp(
~

tC λθ =      (10) 

where, θ  is the model predicted value of an internal battery 
parameter like RCT or RE. The overall model development 
scheme is depicted in the flowchart of Figure 4. 

Diagnostics and Prognostics 

The model developed in the previous section is fed into the 
Particle Filter (PF) framework. Data from the system sensors 
are mapped into system parameters which are subsequently 
used for further analysis. The diagnostic thresholds on the 
parameters are arbitrarily chosen based on the baseline data 
sets. Once the diagnostics module detects a fault, it triggers 
the particle filtering prognosis framework. The PF uses the 
parameterized exponential growth model, described in (10), 
for the propagation of the particles in time. The algorithm 
incorporates the model parameters C and λ as well as the 
internal battery parameters RE and RCT as components of the 
state vector x, and thus, performs parameter identification in 
parallel with state estimation, thus accounting for more 
sources of uncertainty. Taking advantage of the highly linear 
correlation (as derived from data) between RCT+RE and C/1 
capacity, i.e. battery capacity at rated current, predicted 
values of the internal battery model parameters are used to 
calculate expected charge capacities of the battery. Future 

predictions are compared against end-of-life thresholds to 
derive remaining-useful-life (RUL) estimates. Figure 5 
shows a simplified schematic of the process described 
above. 

The state and measurement equations that describe the 
battery model are given below: 

  z0 = C ; Λ0 = Λ 

  zk = zk-1.expΛk + ωk 

  Λk = Λk-1 + νk 

  xk = [zk ; Λk] 

  yk = zk + υk      (11) 

where, the vector z comprises of  RE and RCT, and C and Λ 
contain their C and λ values respectively. The z and Λ 
vectors are combined to form the state vector x. The 
measurement vector y comprises of the battery parameters 
inferred from measured data. The values of the C and Λ 
vectors (for both RE and RCT) learnt from RVM regression 
are used as initial estimates for the particle filter. The noise 
samples ω, ν and υ are picked from zero mean Gaussian 
distributions whose standard deviations are derived from the 
given training data, thus accommodating for the sources of 
uncertainty in feature extraction, regression modeling and 
measurement. Resampling of the particles is carried out in 
each iteration so as to reduce the degeneracy of particle 
weights. This helps in maintaining track of the state vector 
even under the presence of disruptive effects like unmodeled 
operational conditions (in our case, high temperature).  
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Figure 3 – Zoomed EIS Plot with Internal Battery Model Parameter Identification 
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5. RESULTS 

The output of the RVM regression along with the 
exponential growth model fits for RE and RCT are shown in 
Figure 6. The use of probabilistic kernels in RVM helps to 
reject the effects of outliers and the varying number of data 
points at different time steps, which can bias conventional 
least-square based model fitting methods. 

Figure 7 shows both the state tracking and future state 
prediction plots for data collected at 45°C. The threshold for 
fault declaration has been arbitrarily chosen. The estimated 
λ value for the RCT growth model (10) is considerably larger 
than of the training data (collected at 25°C) primarily due to 
rapid passivation at elevated temperatures. 

Figure 8 shows the high degree of linear correlation between 
the C/1 capacity and the internal impedance parameter 
RE+RCT. We exploit this relationship to estimate the C/1 

capacities of the cells.  

Remaining-useful-life (RUL) or time-to-failure (TTF) is 
used as the relevant metric for prognostics. This is derived 
by projecting out the capacity estimates into the future 
(Figure 9) until expected capacity hits a certain 
predetermined end-of-life threshold. The particle 
distribution is used to calculate the RUL PDF by fitting a 
mixture of Gaussians in a least-squares sense. As shown in 
Figure 9, the RUL PDF improves in both accuracy 
(centering of the PDF over the actual failure point) and 
precision (spread of the PDF over time) with the inclusion of 
more measurements before prediction. 

6. CONCLUSIONS 

The combined Bayesian regression-estimation approach 
implemented as a RVM-PF framework has significant 
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Figure 6 – Particle Filter Prediction 
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Figure 7 – RVM Regression and Growth Model Fit 
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advantages over conventional methods of RUL estimation 
like Autoregressive Integrated Moving Average (ARIMA) 
and Extended Kalman Filter (EKF) [11]. ARIMA, being a 
purely data-driven method that assumes system stationarity, 
does not incorporate any physics of the process into the 
computation, making it unsuitable for long-term predictions. 
Additionally, it may not be possible to eliminate all non-
stationarity from a dataset even after repeated differencing, 
thus adding to prediction inaccuracy. EKF, though robust 
against non-stationarity, suffers from the inability to 
accommodate un-modeled effects and can diverge quickly in 
the presence of unanticipated operating conditions. A 
Bayesian statistical approach, on the other hand, is well 
suited to handle various sources of uncertainties since it 
defines probability distributions over both parameters and 
variables and integrates out the nuisance terms. Also, it does 
not simply provide a mean estimate of the time-to-failure; 
rather it generates a probability distribution over time that 
best encapsulates the uncertainties inherent in the system 
model and measurements and in the core concept of failure 
prediction. 
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